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Several sigmal detection experiments emploving a farced-choice procedure
are analysed in terms of a moddel that incorporates two distine? processes: a sensory
process and a decision process.  The sensary pracess specifies the relation hetween
external signal. events and hypothesized sensory stutes of the eubject, The
decision process specifies the relation between the sensory states sl the oheervable
responses of the subject. “The sensory process is assumed to be fixed thronghout an
experiment, whereas the decizsion process is viewed as varving from trial to trial as
a function of the particular sequence of precedmg ¢vents, The changes iy the
decisinn process are assumed to be governed by a siple stochastic lcarmine model.
‘There are several wavs of formulating the learning mode! and the experiments
repartedd hiere were desicned o select amoeng these alternative approaches.  The
empirical results favour a linear-nperator process with trinl-to-trial changes_in
response probabilitics that are a function not only of the 2ignal and information
events, but alse of the particular sequence of sensory states activated.

1. InTRODLCTION

This paper examines a madel for choice belaviour in a two-altcrnative
forced-chaice detection task.  "The maode! is restricted 1o experimental situations
where the subject is given feedback on every trial regarding the correctness of
his response, and to situations with a simple outcome structure. Thus the model
has a limited range of applicability, but for appropriately contrived ¢xperiments
it appears to provide an accurate account of the gross aspects of the data and
certain sequential effects.  The model represents a special case of a mnre general
theory proposed by Luce (1963); it is also very similar in most details to a model
of forced-choice hehaviour propnsed by Atkinson (1963). The relations of the
mode! developed in this paper to these other theories of detection hehaviour are
examined in some detail by Atkinson, Bower and Crothers (1965, Chapter 5);
they also discuss the relation of the model to various theories that have been
proposed for probability fearning experiments.

The model postulates that the observable relations hetween stimnlus events
and responscs are a product of two processes: a sensory process and a decision
process. The sensory process specifies the relation hetween the external stimulus
event and hypothetical sensory states of the subject. The decision process

'8upport for this research was provided by (ie National Aeronautics amel Space Administration,
no. NGR-05-020-036,
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speceifies the subject’s response in terms of his enrrent sensory state and infirma-
tien that he has acquired during the course of a given experitent. The two
processes interact as follows: the stimulus is fed into the sensory process which
comverts the pattern of external encrgy changes into sensory information (sensory
events); the decisiou process then operates on the sensary information to deter-
mine a response.  Some theories of detection have assumed a continupm of
sensory states (Green, 19605 Swets, 19615 Tanoer amd Swets, 1954), whereas
others have argued fur a finite representation (\ikinson, Carteretre amld Kinclila,
1962; Fechner, 1801); Luce, 1963 ; Norman, 1964}, Further, some have proposed
that the scnsory process is static mver trials, wherens others lutve assemed that
it varics within certain fixed limits from trial to trial as a function of precading
events (Atkingon, 1963). One point of agreement among all theories is that the
decision process is dynamic, and undergoes change when the experimenter
manipulates the presentation schednle or onteome structure. However, for a
piven experimentad schedule some theories treat the decision process as fixed
(independent over trials), whereas others represent it as changing from trial to
trial as a function of the particular sequence of preceding events,  “This latter
way of representing the decision precess is an important feature of the model
considered in this paper. The subject is viewed as adopting a pattern of decision
making in cach experimental situation by means of a simple stochastic learning
mechanism,  The learning mechanism that will be examined is similar to these
ptoposed by Bush and Maosteller {(1955). i

As noted above, the type of psychophysical situation that we shall consider
is a two-alterpative forced-chnice detection experiment,  On each trial two
temporal intervals are defined and the subject is instructed to report which
interval contains a signal. It is a foreed-choice task in that on cach trial the
subject must sclect one of the two intervals as containing a signal even if he is
uncertain as to what occurred. The presentation of a =ignat plus noise in the
first intcrval and noise alone in the second interval on trial # will be denoted as
Si.n and the presentation of noise in the first observation interval.followed by
signal plus noisc in the second pbservation interval as S, ». Further, the subject’s
responses will be denoted A, 5 and A, » to indicate which interval he repurted
contained the signal on trial n.  Yinally, E, 5 and E, » will denote the vecurrence
of an cvent at the end of trial # informing the subject that stimulus S, or 8§,
respectively, was presented. ‘Thus

Si,a =the presentation of stimulus S; on trial n,
A} 2 =the occurrence of response A on trial n,

Ep n=information event at the end of trial » indicating that stimulus

Sy was presented.
Using this notation each trial can be described by the nrdered triple £S5, A, Fid.
In experiments of the type described above the following variables can be
manipulated: (a) physical paraincters of the signal and noise; (b) presentation
schedule of signal events; {¢) information fcedback ; and (d) the outcomié structure
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which specifies the payefls assnciated with correct and incoreeet responses. 1n
this paper we shall examine how these varinbles influence detection behaviour,
but the experiments -reported here deal only with miemipulations invalving
presentation schedules and information feedback,  The presentation of sirnal
cvents will he specified by a prébabilistic schedule; namely, events S, and S,
will furm a binomial sequence with parameter ¥ Further, the expuoriments
empluy a simple onmcome structure.  "The subjeet is instructed to make a correct
response as often as possible, and each trial terminates with an infurmation event
which tells him whether he was correct or not. Vhere are no monctary pavefis
or penalties fur correct and incorrect responses as is frequently the case in
detection experiments.

'The major dependent variable is the prabability of an 1 response on trial

n, given that stimulus 8¢ accurred.  The four outcomes can he represented by
the matrix

A.l.ﬂ 4"3,!!
Py .S:,,., Pr(A,q|Sia) Pr(dsq ;s:,,,,) . a
SembIr{dya {San) DPricd,n|Sen)

"This matrix will be calied the perfor manee matrix,  1u the literatnre the occurrende
of an A, responre to an S, stimulus is calted a lit, and the accurrence of /1,

response to an 8, stimulus is called a false elorm.  We shall use this terminology,
denoting them as Hy and £y, 1.,

Pr(”,,)-—-PrfA,_n | Sl-")
Pr(Fy)=Pr(A, . | Sy.0).
Fixing Pr{f{y) and Pi(Fy), then, completely specifies the performance matrix,

Other quantities of interest cun be defined in terms of the hits and. false

alarms,  Frequently we want to know the probability of an A, response on trial
# indcpendent of the stimulus event; namely,

Pr(A, ) = Pr(H)Pr(S, a) + Pr(Fu)Pr(Sy »). @)
Also of intcrest is the probability of a correct response on trial n (which is
denoted Cy):

PriCy)=Pr{II)Pr(S, n}+[1 = Pr(Fu)1Pr(Sq.a). (3)

2, AssunpTions AND Rruies oF lDENTIFICATION
Sensory and Decision Processes

The mode] assnmes that one and only one sensory state can occur on each
trial of the experiment. ‘The scnsory states will be denoted as 5, 5, 55, 55, .
We do not supposc that the same sensory state nevessarily results whenever a
pacticular stimulus is presented, but rasher that the state is determined by a

random process. The scnsory process on trial 7 of an experiment can be
represented by the semsory mairix
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S5 S S3 ... 8,
5 S [am an ey ... «f.:']
S.Lely ap o ...l
where o7 denotes the probability of eliciting sensory state s; on trial n given
stimulus Sy on that trial. Similarly, the decision process can be represented by
the matrix
4, 4,
sl diy 4R
nldy dy
spl 4 df)
Dn = . .

(m in}
—dr'; d:"z-!

where @ is the probability of eliciting response 4y on trial # given sensory
state s¢ on that trial. Then the performance matrix specificd by eqn. (1) is
obtained by taking the product of the sensory matrix and the decision matrix;i.e.,

Pn = SnDﬂ-

The model that we shall examine postulates threc sensory states for the
two-alternative forced-choice task:

$o=no detectinn
sy =detection in observation interval 1
§5=detection in ohservation interval 2.

Further, the activation process and the decision prucess are defined by the
following matrices:

B 8 S5
Sl l"'-ﬂ' ag 0
Sa= S;L1-0 0© u] )
A, A,
So[ Pa 1—pn
Du=s,{1 © )

se L0 1 .

There are several points to note about these matrices,  First, the entries in 5,
are cunstants independent of the trial number;- thus the sensory process is
assumed to be fixed over all trials of the experiment.  In contrast, the decision .
process may vary as a function of the trial number, and this dependence is
indicated by affixing the trial index # to p.  Also, 5, can occur only if S, is
presented, and s; can occur only if 'S, is presented. Thus these sensory states
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have an unambiguous relation to the stirnulus, since the signal event can be
inferred with probability 1 when they occur. In contrast, sensory state s, is
ambiguously related to the stimulus, for it can occur following either signal
event. The parameter o characterizes this stimulus ambiguity in the output
of the sensory system. Both Joss of stimulus infurmation duc to external noise
and loss due to limitatiens on the resolving power of the scnsory system are
summarized by e, Thus ¢ may be interpreted as a measure both of the physical
stimulus and of the subject’s scasitivity; o will be rcferved to as the sensitivity
parameter.

'The decision matrix D, reflects the relative ambiguity of the sensory states.
If the subject’s instructions are to make an A, response given an §y stimulus,
then the correet response is completely determined when an s, or s, sensary state
vecurs.  However, the subject faces a dilemma if he must make a- response on
the basis of 54; cither stimulus coulil have eveked s, so the subject needs some
strategy by which he can rezolve the ambiguity and sclect a response. ‘The
quantity p, is a measure of the subject’s tendency to resolve the ambiguity by
making an /1 response rather than an Ay; py will be reflerred to as the response
btas on trial n,

For the experimental variables discussed carlier it will be assumed that the
presentation schedule, infurmation fecdlack and the outcome structure influence
fme bt do not affect the sensitivity parameter o, Alse, it will he assumed that
the sensitivity paraincter, for a given subject, is determined salely y the physical
aspeets of the experimental siwgation. It is, of course, necessary to show
experimentally that these interpretations are correet, and to examine how the
pamamciars o and py, are telated to the physieal characieristics of a given
experimental situation. )

In arder to see how the sensitivity parameter and the bias paramcter interact,
consider the relation between hits and false alarms as ane or the other of these
parameters is manipulated, Taking the product of the matrices in eqns, (4) and
(5) yields the performance matrix Py for this model. T'he entries in the first
column of Py are as follows:

Pr(H)=(1—mpn+0o {6a)
Pr(F))=(1-0a)pp. - (oY)
If o is held constant and pp is manipulated, an exchange telation is established

between Pr(ffy) and Pr(Fy,). 'I'he cquation of this relation can be obtained by
eliminating p, from cqn. (6} yickling

Pr(H,) = o+ Pr{(Fy). ')

Thus, if « is held constant (fixed signal and noise Tevels) and pg is furced to vary
(manipulations in the presentation schedule, outeome structure, ete), - the
rclation between hits and false alarms should be a linear function with stope 1.
Plots of the relation between Pr(f,) and Pr{Fy) under experimental conditions
where the signal-to-noize ratio is held fixed and other variables are allowed to
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vary are often referred to as receiver-nperating-characteristic curves, or more
simply as ROC curves.
If py s held constant and the sensitivity parameter changed, there is a

well-defined relation between hits and false alarms.  Eliminating ¢ from eqn. {(6)
yiclds

Pr(Haj=1 - Pr(Fa) [ 1_;:"1 ] . (8)

Plots of the relation between Pr(Hy) and Pr{F,) when py is constant and o is
varied are called rso-bias curvrs.

Learning Process

As indicated earlicr, an important feature of the present analysis is to
represent changes in the bias probability in terms of a learning process of the
tvpe proposed by Bush and Moestetler (1955).  We assume that the hias on trial
n 41 is a Yincar function of its value on trial o, Specifieally, i 5, ocears aned is
followed by ¥, (i.c., the experimenter informs the subjeet that the signal was in
the first interval) then p, will increase. I s, ocenrs and s followed by informa-
tion cvent Ka, then py will decrease. For all other confingencies no change will
oceur in . Fliese statements can be summarized as follows:

C(L-0)pu+0, fsgud Eyn
Pan1= (1- GJ)PPI if 5.0 & Egn (9)
Py othcrwise,
where 0 <@, 8 < 1. Justification fur this equation is pustponed until later,

We now want to derive an expression for the expected valne of py, as a
function of the presentation schedule and the sensitivity parameter, Recall
that y is the probability of an S, signal event and 1 ~o is the probability of
activating sensory state s, given cither S, or S.. lHence

Pr(son &'F, p)=y(1—n)

Pr{sgn & E n)=(1-7X1-0)

Pr{otherwise) =o.
To eompute the eapected value of the bias probability on trial n+1, sitnply
weight each of the possible outcomes listed in eqn. (9) by its prubability of
occurrence given above, That is, the expecled value on trial #+4 1 given a fixed
value pu op trial n is

E(puys) =kl — ofl(E—0)pa + 0]+ (1 -y}t — o)(1 - F)pu+ ops
=[t —{1—a)}{fy +0(1 — ¥) Ipu + Oy(1 -0},

Tt ean be shown that p, in the above cquation can be replaced by its expected
value {Atkinson, Bower and Crothers,. 1405). Consequently we have a lincar
frst-ordédr difference equation in E{p,) which has the solution

E(P") =Pz -(Pan '—P:I.)Gn—l ’
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where

; L

PR S 10

Po= iR (10)
G=1-(1~o)fby+6(1-7)]

and ¢=8'/0, Note that p_, which is defined as lim E(p,), does not depend on

ns

the absolute values of € and & but only on their ratie.
Combiniag the results in eqns. (6) ard (1U) yields .
Pr(t)=o+{1-0)[ps - (po-PIG"] (11a)
Pr(Fy) =(1 - a)[pa — (P — 1) ] (11 b)

From these equations it is clear that hits and false alarms will depend on g, at
the start of an cxperimental session; however, over trials the subject’s perfor-
mance changes at a rate controlled by the quantity (7, and approaches an
asymptote determined by o and p. ‘The change in performance predicted by
eqn. (11) is a well-known experimental phenumenen.  Generally, however, most
rescarch workers have tended to ignore the changes that accus at the heginning
of an experisnental session, and instead have concentrated on an analysis of data
after performance has settled down to a stable level.  For the experiments
analysed in this paper we shall adopt this policy; to do so makes matters sunpler
because fewer parameters need to be estimated.  Since asymptutic performance
‘will be stressed in subsequeat discussions, the fullowing notation will be useful:

lim Pr(Hy)=Pr{fl)

L ad]

lim Pr(Fy) = Pr(F).

"+0
That is, asymptotic expressions will be indicated by simply deleting the trial
subscript, Making the appropriate substitutions in eqn. (11) yiclds

(1-a)y
Pit)=ot sy (124)
(1-9)y
PrF)y= -t 2l 12b
)= Sra=m (125)
Similarly, for the asymptotic proportion of correct responses (see eqn. (3))
- a1y A2y -1}
PriC)=o+(l1-yN1-0)+ (el (13)
and for the asymplotic proportion of A, responses (see cqn. (2)),
1~ o)
P = —_ i

3. EXPERIMENTAL MANIPULATION OF THE PRESENTATION SCHEDULE

We now examine data collected from eight subjccts in a forced-choice acoustic
detection experiment. In this study the signal and noise levels were held
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constant throughout the experiment and the subject was always given information
at the end of cach trial regarding the correctness of his response. The only
experimental manipulation involved the use of three different presentation
schedules. The probability, ¥, of an .S, event took on the following values:

Schedule A: =025
Schedule B: =050
Schedule C:  9=0-75.

METHOD

T'est sessiong of 350 trials cach were tun on conseeutive davs. Fach day & subject
an nn one of the three schedules for the entire sessiom,  kn successive 3-day blocks a
sizhject ran one day on cach of the thre: schodules; within cach 3-day hinck the order was
randomly determined.  ‘Phe experiment involved 15 experimental sessions and therefore
cach schedule was run on five separate days.

Band-liinited Gaussian noise was presentel binnurally in the subject’s headphones
throughout. a test session and the signal was a 1,000 ¢ pos. sinusoidal tone; the tone was
presented for 100 msec, including equal fall and rise times of 20 msec. "The subject was
seated before a display board,  On each trial three lights Bashed on bricfly in suceession:
a redd Jight, an amber Light, and another amber light,  Each light was on for 100 msce with
a 300 msee delay between each suceessive un-period. Phe red light was simply o warning
light, while thie amber lights defined two ohservation intervals,  ‘The onsct of the signal
occurted simultaneontsly with the anset of one of the amber lights,  After the secoml amber
light went ofl the subject bad 2:5 see to indicate his response by pressing a push-hutton
lucated under the appropriate amber light, At the conclusion of the tesponse poreid 2
green light fashed on for 700 misee abnve the correct response button, 1 here was a 1-5 see
intertrial period, thus cach trial listed for 6 sec.

RESULTS

"Table 1 presents the proportion of A, responses on both 8, and S, trials
over the last 230 trials of replications twa through five of cach presentation
schedule; thus cach estimate s bhased on 2504~ 1,000 trials.  The first
replication of cach presentation schedule has been defeted, because we view the
subject as adapting to the detection task on early days of the experiment and
want 1o treat his data only after he clearly understands the experimental routine
and is well practised. Also, the first 100 trials of cach of the subscequent experi-
mental sessions were deleted because, as poted earlier, our analyses are going to
be restricted to asymptotic performance.

In this experiment the signal and noise levels were constant over all ses=ions
and only the presentation schedule varied.  Therefore, o should be fixed through-
out the experiment, but p, should vary with changes in . 1t has already been
shown that hits and false alarms should fall on the straight line Pr(If) = o + ' {F).
We pow wish to fit this equatien to the three data points corvesponding to
presentation schedutes A, B and C. Figure 1 presents plots of Pr{IT) and Pr{i)
for individual subjects.  In order 10 fit the above equation to the three points for
each subject we use the methed of least squarces, ie, o is selected so that it
minimizes the sum of squared deviations between observed values and those

300



OF2.0)
§C2-0
(sri-0)
SEL-0)
{0+2-0)
GHL-0
SF2-0
1+L-0
(£02-»
9LL-0
(952-G)
L0
(82L-0)
9zL-0
(i JA1)]
LTLo
(e8,-0)
€90
{FHd

(982-0)  (1T+-0)
(4T ]
(908-0)  {xEr-Q)
£€8:-0 100
(908-0)  {6yt-0)
6080 660
(zeL-0)  (154-0)
120 OHF0
9820 (£140)
85L0 9140
(6L2-0)  (+5+-0)
£94-0  T+0
(952.0) (+8€-0)
L6L0  BSED
(16.-0) (265-0)
2.0 #l0
(Z08-0) (Z9t+-0)
0080 OL+0
(OMd ()
3 mpas

(+92-0)
TLR
re0)
1+8-0
[ahi-0)
Glh0
[¥A4-01))
LI
(Z§8-0)
650
(+£8-0)
Ze8-0
(06%-0}
1180

()4d

u1 aze suonlodosd paazosqo ayf)

99t
TR0
(13 Z4)
154y
(vat-0)
B
(o2t (0
850
{crt-n)
RE4-0
(94+4-0))
98%+-0
{65+-0)
04¥-0
(1£4-0)
Lit-0)
I8+ 0)
1240
(‘Fhg

(612-0) WD) (£509-0)
ol40  te-0 (nid
(zor-0) o) (e}
€380 RET0 L0
00 UIETHn {Tri)
9FL0  TrC O HELD
A0 el (Q8Y-0)
L0 L5000 6890
fear.0v UbZ-0v  (0C4-0)
L0 geL-0 He9-1)
toz-g)  (Ze-0)  ledo-0)
W0 L9300 6990
(Re2-0}r (g (20200
ohL 0 STT0 9120
(zol-0Y {otc-0) {¥39-0)
GOL0  THTD (N9
(2z20) (09Z-0) (+11.0)
$2L0  26C-0 FELO
(Oud  (4d  (HMd
& npays
(sasayauaand

LERT-0)
1ET0
Wlew
ity
{osz-0)
o0
{irz-0)
1+2-0
(Lo
[ 4l]
ettt
L1270
(2£2-0)
62U
(+£2-0)
&6TT0
(g15-0}
9uz-0
(Fhd

(+61-0)
£l
{0%-0)
bk
(s0s-(3)
0180
AT
080
1082-0)
vel-0
(9%2-0)
IR0
(9TR-0)
0Ts0
(gur-0)
o0
(cgs-m
R0
(D)d

g )]
8210
(801-0)
£T1-0
Wl
Tl
:_m.._..Ou
irl-0
Z+1-0
0zi-0
(AR}
1TV
{£01-0)
9010
9er-0)
STI-0
(£91-0)
+€1-0
(g

F apripafgy

(9+<-0}
(1r431]
(L15-0)
6750
(979:0}
L6%-0
{625-0)
£+<-0
Toom
109-0
(H4d

(Mg aN¥ (D)d "(I)Md "(E)4d 20 SNOLLHOJAOY] JZAMASH( ANY (LL)1aTeg

adeldAy

vafgng

*] 27av],

301



C r
I T
B
4 - “
Al
4 -
Subext 1 Srjer d
2 - o A7 ~ 1]
9 R g -1219
n ol
(4
A €
n
M
& = Fa
]
-
Tyt 1 §.b eem 1
.2 L - 1 - ang
-1 Zhe e 138
ol g —_ - ---—--——7‘-—---
[
L]
b [ 4 .
S \
4
Shit s Shyrel b
2 o = Acj e - ang
@ - 1233 [P
n ———— —— — S
[
' [
I' )
[ A
LN ol
Sabect T Sohwct B
2 - 252 AeE
¢ 18t 1 14R
o H I 1 | | I ! i
r " & LY L )] 2 4 " R

P=IF)

Ficure 1. Observed and predicted values for Pr(H) and Pr(F).

predicted by the above equation.  Applying the least squares method yields the
estimates of v that are given in Figure 1; these estimates were used to generate
the ROC curves displayed in the figurc. As indicated by the figures there is
good agreement between the observed data points and the predicted ROC
curves. Recall that the signal and noise levels were the same for all subjects
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and consequently variations in o represent inter-subject ditferences in sensitivity
tevel.

Next we evaluate the proposed bias process with regard o the data presented
in T'able 1. Note that if ¥ and o are fixed in egn. (12) and § is varied from 0 to
oz, then the point {Pr(F}), Pr(i1)] mouves along the ROC curve and appruaches
the lower-lelt point (), ¢) as' ¢ >0, and the upper-right poiat (1 —a, 1) as
$ -0, Stated differently, no matter where the point may Ll un she ROC curve
(for fixed values of ¥ and v) there exists a corresponding value of ¢, Hence, if
the three observed points [Pr(F), Pr(1)} fall on a straight line with slope 1,
then perfeet fits of the data can be obtained by estimating separate values of
¢ for cach presemation schedule.

However, ubtaining an estimate of ¢ for eacl presentation schedule would
violate the basic rationale for the model,  In formulating equn. (Y) it was assumed
that 8 and @ characterize trial-to-trial adjustments 1o stimulus and information
events, and did not depend on the overall presentation schedule. “Fhe values of
0 and 0" may vary from subject to subject reifecting individual differences;
however, for a given subject # and & are assumed to be fixed and invariant with
regard 1o the presentation schedule and the signal imcnsity.  Earlier it was
assumed that o was independent of the presentation schedule, and th: same
constraint is placed on . “T'hus for each subject we want a single estimate of ¢
which then can be used to make predictions for all three presentation schedules.

The observed proportion of A; responses given in [able 1 was used to
estimate . Eyuation (14) gives the theorctical expression for Pr(d,); solving

for ¢ yiclds

= ¥{1—o) _ Y
(Pr(A) ~oyf(1-7) 1~y
For cach presentation schedule we have substituted the estimated value-of ¢ and
the observed value of £ 4,) in the above equation to obtain an estimate of ¢.  For
example, fur Subject 1, o=0-447, Pr(A,)=0-278, and ¥ =025 on schedule A;
hence substituting in the above equation yields f, =57, Rimilarly ¢, and
. can be computed using the appropriate values of y and Pr(A4;). An overall

TaBLE 2. IESTIMATES oF g

Subject ¢ A i i
1 0-860 U777 14099 0705
2 1219 1-162 1400 1'0%
k] 1-265 1155 1390  1-251
4 1-238 1324 1-H6 05
5 1-329 1065 -9 1472
6 1083 145 11147 1018
7 1-016 0914 1028  1-105
8 1-148 1384  i-254 0775

Average 1145 1-108 (280 1-(H6
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estimate of ¢ was obtained for each subject by taking the average of the three
eslimates; namely $= i(tfh,‘ +$n+$.-). The various estimates of § are presented
in Table 2. Note that for all but onc subject ¢ is greater than one, indicating
that & > 8. 'T'he interpretation of this result is that the E, cvent has a slightly
greater effect on increasing the probability of an A, response than the E,; event
has on increasing the probability of an A, response.

Using the estimates of o and ¢, predictions can be computed for Pr(H),
Pr(F), Pr(C) and Pr(A)) from eqns. (12) to (14). "These predicted values and
the corresponding obscrved quantities are presented in Table §. Also in Figure 1
the predicted and observed values of Pr(#) and Pr(J) are plotted in the ROC
space. In this figure the predicted point for cach presentation schedule is at the
intersection of the predicted iso-bias curve and the ROC curve. QOverall, the
correspondence between predicted and obscrved values is quite good.  Only
Subject 8 oappears to display systematic discrepancies. To a degree, this
subject’s perfurmance deviated from the theoretical values in the dircction of
optimizing the probability of a correct response; that is, for fixed o, to maximize
the probahility of a correct response the subject should set the biss parameter at
unity when y > §, and at zere when y < 4 (sec eqn. (13)). If the subject adopted
this strategy, then the ROC curve would reduce 10 three points; one at (O, a) for
y <4, another at (1—0,0) for y>{, and a third point for the presentation
schedule where y=}. Undoubtedly if monetary payolls for correct responses
and penalties for incorrect responses were intrndduced into the cxperimental
situation, more subjects would deviate from the theoretical values in the direction
of optimization. We shall rcturn 10 a discussion of this peint later.

Time-order Effect

In the forced-chuice detection task the term time-order cffect is used to
refer to the fact that subjects generaily, are more accurate in detecting signals
embedded in the sccond observation interval than in the first.  For éxample, on
schedule B (which has §, and .§, events occurring equally often), every subject
had a higher probability of being correct when the signal was in the second
interval than in the first interval. In terms of the present analysis there are two
explanations for this time-order elfect.  One is that the bias parameter tends to
favour the A, response. Hence when sensory state s, is activated, the subject
makes the A, response more freguently, which insures that he will have a
higher probability of being correct on S, than on 8, trials. "Another possibility
is that the time-order effect occurs because the subject’s sensitivity level changes
from onc observation interval to the next: specilically, that there are two
sensitivity parameters o, and o, associated with the two intervals and ap > oy,
Thus a time-order effect can be accounted for by postulating a bias process that
tends to favour the A, response, or by postulating a sensory mechanism that is
morc sensitive to stimuli presented in the second obscrvation interval.

Both of these explanations are tenable and one would like to have sowe
means for sclecting betwecn them; fortunately the model makes quite different
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predictions depending on which explanation is offcred. If the explanation is in
terms of the bias function (as was the case in our analysis of these data) then the
ROC curve has slope 1 and the timec-order effect is simply due toithe fact that

¢>1. K, however, the cffect is explained in terms of different sensitivity levels,
then

Pr(H)=o.+(1-o,)p
Pi(F) =(1 - o,)p.

Under these conditinns the ROC curve is
Prin= 2 I’r(I‘) +oy.

If o,>a, the slope of the ROC curve is greater than ene. Thus to decide
whether the time-order effect is due to the bias process alone, or whether it also
may be due to differential sensitivity levels, we mnost determine whether the
ROU curve has slope greater than one. Inspection of Figure 1 indicates that
there is no evidenee (except passibly for Subject 2) to srgest that the observed
points would be better fit by a line with slope greater than one.  Thérefire, for
1his experiment, the conclusion is that the time-order effect is due to the bias
process, and there is no need to postulate changes in sensitinvity over the two
observation intervals.

4, BiLank TriaLs anp Faise Inroramamion

We now eaamine two modifications of the foeed-clnice detection task
"used in the previous esperiment. One involves the intoduction of blank trials
and the other the use of false-information feedback., Ry blank trials we mean
that on occasion a trial will occur on which the signal hus beeh omitted cntirely;
the subject is not told that blank trials are being intinduced and (because of the
forced-choice nature of the task) continues 10 make A, and Ay responses. A
blank trial will be denoted as 8, By false-information feedback we iwean that on
sure trials the subject will be told that a sipual oecurred in a particular observation
interval when in fact it did not.  The introduction of these two modifications in
the detection task permits us to make some sh‘lrp predictions that ditferentiate
this modcl from others with similar assumptions.

- In the present experiment the subject was given the same instructions that
were used in the first experiment, i.c., he was told that a signal would occur on
every trial and that the information events at the end of cwh trial indicated the
interval in which the signal accurred.  Actually, howe or, the presentation
schedule involved 8), §; and S, type trials; on S, trials an £; always oceyrred,
on 8, trials an £, always occurred, and un S, trials sometimes E; oceurred and
somctimes £y, The presentation schedule used in this study can be characterized
by the parameters y, » and x as follows: (@) with probability xy a signal was
presented in the first interval and, after the response, I, occurred, (5) with
probability x(1 - y) a signal was presented in the second interval and followed by
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Ey, and (c) with probability 1 —x a blank trial was presented and an E, occurred
with probability = and an E, event with probability 1 — 7. Thus, the prebability
of presenting a signal in the first interval was xy; but the probability of telling
the subject that the signal accurred in the first interval was Pr(E, )= xy + (1 - x}m.
Similarly, the prubability of presenting the signal in the second interval was
x(1 —v); however, the probability that the subject was told that the signal
occurred in the second interval was Pr(E. )=a(1-9)+({1-x)(1-#). The
model presented earlier is direcily applicable to this experiment. No new
assumptions are necessary; we need only apply the axioms and carry vut the
appropriate derivations. First of all, consider the sensory matrix for this experi-
ment, In terms of the assumptions

S 5 %

S fl—-e¢ ¢ 0

5=5;jl-0c 0 ¢

SolL1 00

Jsing thc matrix §* and the decision matrix D, specified by egn. (5), a perfor-
mance matrix P* -an be derived whose rows arc the events §,, Sy and S, and

whose columnns arz the responses A4, and A,. The cntries in the first column of
the matrix P2} ar.;

Pr{lly)=Pr{A, n | S1.n) =0 +{1 - a)pn (15a)
Pr{Fe)=Pr(A, o | Se.n)=(1-0c)pa (15b)
Pr{A; 5| So.0)=pn ' (15¢)

From eqns. (15a) and (15b} it is clear that the ROC curve is the samwc as one
given in eqn. (7} for the first experiment.  Also, from'eqns, (15a) and (15c) it
follows that Pr(H,) and Pr(A, » | 5),a) are linearly related as follows:

Pr{Hy)=0+{1 0)Pr(Ay.n } So.0)- (16)

Equation (9) presented the axioms describing possible changes in ps. 'These
axioms are directly applicable to the present experiment. Given cqn. (9) we
need only to compute the probability of the events (s, 5 & E, ») and (fo.n &
Eyr). The tree in Figure 2 describes the possible events that can oecur on a
given trial. From the figure we obtain

Pris, x & E; y)=xy{l ~o}+{1 — )=
Prits.n & Ey p) = 2(1 ~y)(1 — o) + (1 ~x)(1.- 7)
Pr{otherwise) =xo.

Given these results an expression can be derived for E{p.). We shall not carry
out the derivation, for it involves precisely the same arguments that were
employed in developing eqn. (10). Invoking these arguments yields the following

equation:
E(pa)=po—(Po—p1)C"".
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Figure 2. A trce describing possible events and their related probabilities for the blank-
trial experiment.

llere _
G=1-00xy{l — ) + (1 —5)n] — FTa(l ~y){1 — o) + (1 = x)! ~ m)],
and
_ xy{l -o) 4 (] —x)w
LA o s s g g e T L
where $=10'/8,

METHOD

The same experimental procedures were employed in this study as in the first one
except for the pretrdining phase. Pretraining took three days and involved running each
subject on the schedule B routine used in the first experiment. The signal intensity was
held fixed throughout the experiment, but during pretraining the experiimenter manipulated
the noise level in an attempt to establish a signal-tu-noise ratio for each subject that yielded
a eorrect response percentage of approximately 79; the rationale for selecting this particular
value will be given later. The manipulation of the noise was done strictly by trial and
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error, but the procedure proved to be quite suceesaful for by the end of pretraining a tevel
had been estahlished for cach subject that vichied a correct 1esprmse probabality fairly close
tu the desired value,  During the remainder uf the experiment the noise level was fixed for
each subjoct at the valne determined for him during pretraming,  Also, any subjeel who
tended tn strongdy favour one response over the nther, during pretraining, was eliminated
fromm the experimient. Ondy subjects whese overal! propartion of A, responses was betwern
040 and G40 for the sceond ond thivd days of preteainine were inchaded in the nein
oxperitnent.  Four subjocts from a group of IR were eliminatod on this hasis,  Preteanning,
therefore, invelved twno speciat features: (@) noise tevels were determined individually for
each subject, and () subjects were climinated from the exprianent who showed a strong
peeference for nne of the response alternatives. "Uhe first reguirement guaranteed that the
sensithvity parsmeter o wag approximately fhe same for all subijects, The second insnred
that ¢ was faitly close to 1 for all cubjecta. Thus, in s conel sense, 0 homogeneons group
of subjuets wag frnmed by usine this poeteaining procedure; hatnogenenas in the serse that
all sulyjects werr characterized by approximately the sone values of o and &,

In the cxperitnent praper, four presentati-n schedoles wore used. “The probadiility x
of a sipnad il was 0-50 for al) schedules, an the seheJules ditlered in e values of 3 imd
o as fullowy:

23 a=1+75
=025 Schedule A’ Schedule (7
§¥=0T5%  Schedule 7' Schedule 17

Test aeavions of 400 trinle werr run on cnnzecutive dnvs, Farh iy a suhject 1an ©on ope
of the above presentation schedules for the entire session, I sueressive 4ecday hlacks o
rubiject camnpleted ane day on each of the four schedides; within cach 4.day Black the ordes
of schedules was randomly determinal. The experinrent feoalved 20 west seasions and
therefore cach schedule was repeated on five separate days.

RESTILYS
Table 3 presents the average proportion of A, rezponses canditional upon
the verious trial types; these averuaes are based an 11 subjects.  Proportions

TarLr 3, Owinni e AND PrEPICTED Varves rop 1ur I avk-Teian STy

Sihiedi'e A Schecdule 1t Schedute € Schedule 1Y
Ohs,  Dred, Ohs,  Ired. One. Pred. Cihs,  Pred.
riin nndl 0672 0755 0734 N-R20 050 0ot hSR
e 1) 0086 0100 0174 012 N7 0249 0-144 0-314
P 1Sy 213 0238 40 0375 +sR3 378 oS 0T
Pri-1) 021y (0-238 0SNS5 (-4RS§ 0464 0-184 764 0738

wers compuied for cach subject based on the List 350 trials of replications twn
thiough Give of a given presentation schedule; thus the estimites for each suliject
are based on a sequence of 4 % 350 = 1,400 trials. 'The averages of thewindividwal
subject proportions are the quantitics prescated in the table,  Although data
were analysed for individual snbjects in the first experiment, there is a theoretical
rationale for treating gronp data in the present experiment.  The rationale is
hased on the pretraining procedure, which was désipned to insure that both o
and ¢ would be approximately the same for all subjects. By inspection of
eqns. (15) and (17) we sce that Pr(I7}, Pr(F) and Pr{A, | S,) depend on only
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eand . If ¢ and 4 are identical for all subjects, then the model makes the same
predictions for the group average as for individual suhjects.

Figure 3 prescnts plots of the observed values of Pr(/) and Pr(F) as given
in Table 3. The theory predicts that these points should fall on a linear curve
with slope 1 and intercept o, We estimated o from these four data points by
using the method of least sqiares and obtained 4 =0-572, Thix cstimate was
used to generate the ROC curve displayed in Figure 3. The four abserved points
{one from each schedule) fall fairly close to the predicted line.

Figure 4 presents a plot of Pr(4, | 8,) versus I'(If).  As indicated in
eqn. (16) these points -hould he related by a linear function with slope | — o and
intercept o.  The straght line in Vigure 4 was genernted using our previous
estimate of o. Ounce again the lncar relation srems to he reasonably well
supported.

To pencrate numerical predictions for (.1, ] S7) an cstimate of ¢ is
required in addition to the cstimate of o, Estimation of this parameter is
attained using the same methed erployed eartice, The overall probability of
an /A, response is

Pr(ed )y =y Pr(A [ S F (] - 9y LS+ (0 - 00Pr( Ay | S

m=axy-+(l —axlp,. (18)
Substitunting in the éxpression foe p given in eqn, (17) viclds an expression in
d. For each presentation sehwdule we have substituted the estimated value of
g and the olmerved vene of D)o the alove equation and solved for 4 Tor
cxample, for schedule ¥ the ohaerved value of Pl is 02195 letting & = 0-5372,
=025 and s 25 in the above equation yields Ji. - 1281 Similarly, for
the other -schedules we obgin . = 0069, $o= 1229 and fﬁ!,.-—ﬂ-.‘*‘)?. It is
interesting to note that ¢ <cews 10 be correlated mote with y than with a.
schedules A" and €7 (v~ 025) bath yich! ¢35 1, whereaz sebedules B oand 1Y
(y=075) vicld = 1. Recall that ¢=0'if and that y is the prabability of a
signal in the first interval (if there is a signal).  The present estimates of $ suggest
that & is greater than @ if the probability of the signal being in the sceond
interval excecds 1, whereas the reverse relation holds otherwise.  Ilence the
change in the hias parameter pp seenis 1o be dominated by the interval with the
higher probability of bracketing the signal,  Despite this departure from
independence of the parameters $ and y, very hittte damape is done to the accuracy
of the predictions from the maulel, as will be scen shortly.

"I'o obtain an overall estimate of ¢ we have taken the average of the separate

estimates of ¢, ie.,
$=1fu+dp+detén)
=1-094.
With these estimates of o and ¢, eqns, {15) and (17) can now be used to generate
predictions for Fr{f), Pr(F), Pr(4, | 8,) and Pr(A,;). These predicted quantities
are given,in Table 3; they also are displayed in Figures 3 and 4 as cross marks
on the appropriate line segments. There are no constraints on the relations
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among the quantities Pr(4,|S,), Pr(4,]S,) and Pr(A4,]S8,), and therefore
twelve independent predictions are being made on the hasis_of two paramcters.
An inspection of the armay of observed and predicted guantities indicdtes chat
the correspondence between theoretical and observed values ix quite satisfactory.

For both schedules B and C' the £, and E, events occurred equally often,
i.c., on both schedules the subject was told (via the trial-to-trial fecdbavck) that
the signal was occurring equally often in the two observation intervals. However,
the signal actually oceurred more frequently in the first interval for schalule
B’ than for schedule C'. 'These experimental manipulations are clearly
reflected in the data. On an S, trial the probahility of an A, response was
greater for schedule ¢ than for uchedulc B’ (0-553 vs. 0-401), whereas over all
trials the probahility of an A; response was grearer for schedule B’ than for
schedule C* (0-505 ¢, 0-464). Both of thesc relations are predicted by the model.

Sequentinl Effects

‘the model predicts not only hit and false-alarm rates but also sequential
properties of response protocols.  In terms of the axioms, sequeatial effects in
the ohservable response events are praduced by trial to-trial fluctuations in
#a. Such fluctuations, of course, can take place on any trial and arc not rr‘t.tnctcd
to pre-asymptatic data.  For example, even at asvmptote the bkeliliond of miking
a correet response Lo an Sy stimulus deponds in a very deficiie way on whether an
E, o1 an £, occurred on the preceding teial.  The seyuential effects of partic-
ula interest deal with (he influence of stimmulus and response events on trial »
as they influence the response on trial 4 1; specifically

Pr( 4 i | Stger Asn Sk

However, we shall not examine the correspondener between these particular
sequential effects and theoretical predicetions, because there are 18 such indepen-
dent «uantitics for each of the experimental conditions and the analysis would
imolve too much  detail. Rather. . we  consider P{A,,,, | E,,) and
A, ., | Ey,).  For these probabilitizs the stimulus events on trials n and
# 1 are suppressed, and we vnly ask for the overall likelihood of an .1, response
conditivnal on the information event of the preceding trial.  The 4, could be
clicited by §,, S, or 8§, on trial # +1; similarly the information event I'l on trial.
n could follow an S, or S, stimulus, and the £, an S, or S, stimulus. Asymptotic

expressions for th;ae 1uantitics can be rgadnly obtained (see Atkinson, Bower
and Crothers, 1965) and are as follows;

li__m Pr(Al,ni-i I E|..)=PT(A|_) + (1 - o.x)ﬂ(] _Pw) "(lwzlxli)x_:_’(:y— 0)

(19)
(1 — =)l =x)+x(1 ~ y)1 -0}
,n) P’(Al) (1—-0’1)3?” (l—'rr)(l—.\)+x(l—-y) L]
where p, is given by eqn. (17) and Pr(A4,) by eqn. {18).

lim Pr(A,

ns oo 1.a l-l!
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Table 4 presents the ohserved values for Ir(4,, ., | E,,) and Pr{A,,,, |
£;,). Fstimates of these quantities were obtained for individual subjects; the
average of these estimates are the quantities presented in the table. These

TanLE 4.  OBSERVED AND PRELICTED SrovenTtiaL Qranti1irs For THE Brank-TuialL STiny

Srhedule A" Schedule I Schedule C! Schedule I
Obs. FPred.  Ohs. Pred. Obs, Pred.  Obs.  Pred.

Iirgf’r(z‘l..,,..llﬁl,n) 0255 0267 0529 0503 0475 0303 0784 0-748
n
Ii'r: Pricl, i | Fuad 0207 0:229 (482 0466 0453 0466 0716 0-708
ns

cstimates are based on the same sct of trials as the data presented in Table 3
and therefore will be regarded as asymptotic. The above equations can be used to
generate predictions for these observed values. By inspection of the equatinns
we see that values are nceded for o, # and # in order to make numerical predic-
tions, Bince estimates of o and ¢ have already been made, it is only necessary
to estimate §°; that is, if we fix on some valuc of §° then # is determined because
# {8 must equal the previous estimate of ¢=1-09%. Far present purpascs, one
method for estimating & is to select its value so as tn minimize the sum of
squared deviations between the cipht predicted and observed quantities displayed
in Table 4. To carry out this minimization analytically yields unwicldy expres-
sions, and to avoid this complication we have siniply calculated the sum of the
eight squaied deviations for " ranging from 0-01 to 1-(H) in successive increments
of 0-01. Over this range of values the sum of squared deviations takes on its
minimum when 0" =0-08, This value of # was uscd to generate the predictions
in Tahle 4.

In general, the correspandence between predicted and observed sequential
statislics is rcasonably good. In evaluating the goodness-of-fit it should be
kept in mind that all of the quantities in the table are independent, and thus
there are eight degrees of freedom.  The madel requires that I'r(.1, ,,, | E, )
> Pr{id,)> Pr(A, .., | Ey,): and this relation is supported by all four scts of
data.  Also the model requires that Pi{4,,.,|S;.,, E ) >Pr(d,,,, |
Sipay Eonyfor i=0,1,2. Alhough not presented here, a breakdown of the
data into this form indicates that these inequalities hnld over all four experi-
mental conditions.

5. Discussion

An alternative model for the bias process that has considerable intuitive
appeal involves trial-by-trial changes in p, that are determined solely by the
information events E,; and E;. Formally stated, the idea is that

(1-0)pa+6, ifE,,
Pair™ {(.1 —8')pa, ifE,," (20)
This formulation of the bias process (which will be called Model 2} is to be
contrasted with eqn. (%) (Model 1), where changes in p, can occur only when
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sensory state 5, is activated. In spite of the difference between these two sets
of assumptions, the models yield identical predictions in the first expetiment for
the asymptotic probabilitics of Pr(H). Pr(F), Pr(A4) and Pr(€7). Only by a
detailed analysis of sequential statistics and pre-asymptotic data can it be shown
that Model 1 is slightly better than Model 2.

However, the two madels make strikingly different predictions in the second
experiment even fur asymptatic hit and false-alarm proportions.  For example,
applying Moedel 2 to the false-information stady yields

_ xy+(l—a)m
By + (T=2ya] % [ =)+ (T35 =

From this equaiimn, we see that p i identical for both sehedules B and C of
the seennd experiment; whereas, using Model 1, p, is greater for schedule ¢
than for schedule 1. This relation, of course, is reflected in P {H), and Pr{F)
and Pr(.d; | ;). For Model 2

Prv(In =rr(f)

Priv(I)=Pr(F)
Priv(Ay | Se)=Pr(4, | Sy

where Prv(71) denotes the asymptotic probability of a hit on schedule B, cte.
In contrast, for Madcl 1

B

Pr¥(I1} < P (H)
PriY(Fy < Pro(F
Pri(A, | S < Pr(4,15).
The inequalitics predicted by Modet 1 for schedule - I3 and €’ are borne ont hy

the group averages presented in Table 3; it also is tiwe case that the relations hold
tndividually for all 14 subjects,

T'o further ilustrate the differential predictions of Madels 1 and 2 in the
second experiment, we have plotted iso-bias curves in Figure 5 for the case where

Prik)

Wodel L Metel [T

MmF)

Fi;URe 5. Iso-lias curves for Modcls 1 and 2.
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$#=1. Note that the iso-bias curve for Model 2 is a straight line for all four
presentation schedules, and also that the iso-bias curves for schedules B’ and ¢’
are identical. For Model 1 the iso-bias curves for schedules A’ and D’ are the
same as for Model 2; however, under the assumptions of Model 1, schedules B
and C' generate different, non-linear curves,

Using Model 1, a distance function can be defined between corresponding
points on the iso-bias curves for schedules I and C’. 'I'he maximum of this
function can be obtained by taking its derivative with respect to ¢ and setting the
result equal to zero, Carrying out these operations yiclds

o=2-4/220-59,

Thercfore, under the assumptions of Model 1, the maximum difference between
corresponding points on the iso-hias functions of schedules B’ and C° will be
observed when o is approximately (159, One of the principal reasons for running
the second cxperiment was to determine whether such a difference would be
ohserved. ‘I'hercfore, to maximize the likelihond of discovering an effect if it
existed, we wanted to set the signal-to-noise level at a value corresponding to a
o of -39, Recall that pretraining involved anly 8, and 8, trials, and they were
presented with equal likelihood; hence Pr{r)=a+(1 —a)).  Consequently to
fix o at approximately (-5% required adjusting the naise leve! during pretraining
to yicld a correct-response probability of approximately (079 > 0-59 4 (0-41)1.
The pretraining procedure was fairly successful, inasmuch as the estimate of
a during the actual experiment was 0-572.

Tn both of the experiments reported in this paper, response times were
obtained on each trial.  T'he response-time data are reasonably orderly and are
clearly affected by the presentation schedule.  For example, in the first experi-
ment the time for an incorrect response was about 51 msec longer than for a
correct response.  Also, the response time for an incorrect response appeared
to be independent of the stimulus presentation schedule, whicreas the time for a
carrect response decrcased somewhat as p increased.  An attractive feature of
the present model is that it can be easily generalized to treat response-time data,
The generalization is simply to assume that response time on a given trial is
determined by the sensory state activated on the trial.  More specilically, we
assume that if scnsory state s¢{f = (1, 1, 2) occurs on trial », then the respohse-time
distribution for that trial has probability density fi(t) with wean f,. On the
hasis of this assumption a nuinber of predictions can be Jerived concerning the
events on the current trial (and on preceding trials) as they influence response
time. For example, in the first experiment the mean asymptotic response times
conditional respectively on a correct and incorrect respomse are as follows:

_ ot {0 =)t + (1~ offyp +(1 - )1 —p )
Ario P B e R gy
ET ()=t

If £, <ty <i, then these conditional response-time measures are appropriately
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ordered as y increases. We are currently analy sing an experiment specifically
designed to evaluate the response-time assumption outlined above. ‘I'he analyses
are still incomplete, but it appears that if parameter estimates are made from
the time distributions conditional on correct and incorrect responses, then
reasonably accurate predictions can be made for distributions conditional on
responses and signal events of the current trial (and the'immediately preceding
trial). This approach to response timés nceds more exploration but appears
promising,

The experiments and model analyses considered in this paper have been
confined to symmetric outcome structures involving no explivit payolfs, If we
were to generalize the madel to situations involving manipulation of monetary
payoifs then it would be necessary to offer a more general theory. of the decision
process.  Obviously there are outcome structures that will displace the subject

off the lincar ROC curve specified by eqn. (7). For example, consider the payoff
matrix

Al AI
Sir-1 +10
-s,[+10 -1 .

In this case the subject is heavily rewarded for incorrect detection responses and
penalized for correct ones.  Undoubtedly, aver time the subject would generate
a point [I'r(F), Pr(H)] that el in the lower right-hand sector of the ROC space;
e, Pr(F)>Pr(I1).  Such eflects cannot be predicted mercly by generalizing
the assumptions governing pr,.  No matter how p, is permitted to vary, the maodel
still requires that performance points fall on a linear curve with intercept o, OF
course, several modilications of the theory scem able to acenunt lor experimental
manipulations that generate performance points off the ROC curve. Oneapproach
is to develop a more elaborate conceptualization of the decision process. For
example, one can redeline the decision matrix as

4, A,

Sa[ P= L-pa
Dp=g| 4V 14

sq_l—d® d
For this process capeciinental manipulations of the outconie structure might
afiect not unly p, but also the values of d*. Thus, depending on the postulated
relation of 4} to the payoff matrix it would be possible to generate virtually any
ROC carve. When this type of madification is intreduced one obtains a moedel
that is very cluse in structure to those prupused for discrimination learning
(Atkinson and ¥stes, 1963, p.238; Bush, Luce and Rose, 1964). Another
possible modification of the detection model would be 1o develop a more general
formulation of the sensory process. Pursuing this line, one might assume that
the subject’s sensitivity level could vary within certain fised limits as a function
of the outcome structure and other variables. Buth of these alternatives represent
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potential lines of theoretical development for models of this type. They raise
an important question: can changes in performance induced by manipulation
of the cutcome structure be explained by claborating the theory of the bias

process, or du they also necessitate postulating a more complex -sensory
mechanism?
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